目的 研究航空发动机或燃气轮机高压涡轮在长时间服役后,其气动性能随叶片表面粗糙度增加的衰退规律。方法 采用高效的点源数值模拟方法,考虑级间机匣、冷气流动及封严气体的影响,同时结合单通道叶栅分区域模拟方法开展相关研究。明确叶片表面粗糙度变化影响气动性能的机理,通过SST湍流模型,研究表面粗糙度大小及分布的变化对高压涡轮气动性能参数的影响规律,预测气动性能衰退程度。计算不同表面粗糙度大小和分布下高压涡轮膨胀比、功率、能量损失及效率等关键参数变化。结果 随着叶片表面粗糙度的增加,高压涡轮效率降低,流动损失增大,一级动叶表面粗糙度对高压涡轮性能参数的影响程度最大。除尾缘区域外,一级动叶的其余区域随着表面粗糙度的增大,无量纲能量损失显著上升。粗糙度对流动损失的影响在喉道前压力面和前缘区域较小,在吸力面和喉道后的压力面区域更显著。在尾缘区域,受尾迹涡的影响,无量纲能量损失随表面粗糙度的增大反而略有减小。结论 叶片表面粗糙度大小和分布对高压涡轮气动性能衰退均有显著影响,粗糙度从Ra=2.4 μm增大到Ra=6.4 μm时,高压涡轮内部流动损失明显上升,效率约下降1%,需要采取适当的叶片表面打磨措施,以减缓涡轮性能的退化。
Abstract
The work aims to investigate the degradation characteristics of aerodynamic performance of high-pressure turbines within aeroengines or gas turbines due to increased surface roughness after long-term service. Relevant researches were conducted with an efficient point-source numerical simulation method that incorporated the effects of turbine center frame section, cooling air flow and sealing gas, in conjunction with a multi-region numerical simulation method for single-passage cascade. The effect of blade surface roughness on aerodynamic performance was clarified, and the SST turbulence model was applied to analyze how variations in the magnitude and distribution of surface roughness affected key aerodynamic performance parameters, thus enabling the prediction of performance degradation trends. The variations in expansion ratio, power, energy loss, and efficiency of high-pressure turbines under different surface roughness and distributions were calculated. With the increase of blade surface roughness, the efficiency of high-pressure turbines decreased and the flow losses increased. The blade surface roughness of the first-stage rotor blade had the greatest impact on high-pressure turbine performance parameters. Except for the trailing edge, the dimensionless energy loss increased markedly in other regions of the first-stage rotor blade with the increasing surface roughness. The impact of roughness on flow losses was relatively smaller in the pressure surface before the throat and at the leading edge, but became more pronounced on the suction side and the pressure side after the throat. In the trailing edge region, due to the effect of wake vortex, the dimensionless energy loss slightly decreased with the increasing surface roughness. Both the magnitude and distribution of blade surface roughness have a significant impact on the degradation of high-pressure turbine aerodynamic performance. When the roughness increases from Ra=2.4 μm to Ra=6.4 μm, the flow losses in the high-pressure turbine increase noticeably, resulting in about a 1% efficiency drop. Therefore, it is necessary to implement appropriate surface finishing measures to mitigate turbine performance degradation.
关键词
涡轮叶片 /
粗糙度 /
气动性能 /
航空发动机 /
能量损失 /
效率 /
数值模拟
Key words
turbine blade /
surface roughness /
aerodynamic performance /
aeroengine /
energy loss /
efficiency /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沈士一. 汽轮机原理[M]. 北京: 中国电力出版社, 1998.
SHEN S Y.Principle of Steam Turbine[M]. Beijing: China Electric Power Press, 1998.
[2] ZAYERNOURI M, PARK S W, TARTAKOVSKY D M, et al.Stochastic Smoothed Profile Method for Modeling Random Roughness in Flow Problems[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 263: 99-112.
[3] CHAKER M, MEHER-HOMJI C B, MEE T III. Inlet Fogging of Gas Turbine Engines: Part I: Fog Droplet Thermodynamics, Heat Transfer, and Practical Considerations[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(3): 545-558.
[4] TABAKOFF W.Engine Deterioration when Exposed to Particulate Flows[C]//Volume 4: Cycle Innovations; Electric Power; Industrial and Cogeneration; Manufacturing Materials and Metallurgy. Barcelona: ASMEDC, 2006.
[5] KURZ R, BRUN K.Degradation in Gas Turbine Systems[C]//ASME Turbo Expo: Power for Land, Sea, & Air. [s. l.]: ASME, 2000.
[6] 邹正平, 叶建, 刘火星, 等. 低压涡轮内部流动及其气动设计研究进展[J]. 力学进展, 2007, 37(4): 551-562.
ZOU Z P, YE J, LIU H X, et al.Research Progress on Low Pressure Turbine Internal Flows and Related Aerodynamic Design[J]. Advances in Mechanics, 2007, 37(4): 551-562.
[7] MONTIS M, NIEHUIS R, FIALA A.Effect of Surface Roughness on Loss Behaviour, Aerodynamic Loading and Boundary Layer Development of a Low-Pressure Gas Turbine Airfoil[C]//Proceedings of ASME Turbo Expo 2010: Power for land, Sea, and Air. [s. l.]: ASME, 2010.
[8] ZHANG Q, LIGRANI P M.Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity[C]//Heat Transfer, Part A. Orlando: ASMEDC, 2005.
[9] ZHANG Q, LEE S W, LIGRANI P M.Effects of Surface Roughness and Turbulence Intensity on the Aerodynamic Losses Produced by the Suction Surface of a Simulated Turbine Airfoil[J]. Journal of Fluids Engineering, 2004, 126(2): 257-265.
[10] 平艳, 钟主海, 江生科, 等. 表面粗糙度对透平叶片气动特性的影响研究[J]. 热力透平, 2021, 50(3): 166-172.
PING Y, ZHONG Z H, JIANG S K, et al.Analysis on Influence of Surface Roughness on Aerodynamic Characteristics of Turbine Blades[J]. Thermal Turbine, 2021, 50(3): 166-172.
[11] 孙爽, 雷志军, 朱俊强, 等. 粗糙度对超高负荷低压涡轮边界层影响[J]. 推进技术, 2014, 35(3): 347-355.
SUN S, LEI Z J, ZHU J Q, et al.Effects of Roughness on Boundary Layer of Ultra-High-Lift Low-Pressure Turbine[J]. Journal of Propulsion Technology, 2014, 35(3): 347-355.
[12] 张宗辰, 乔渭阳, 白涛. 叶片表面粗糙度对高负荷低压涡轮的流动影响[J]. 哈尔滨理工大学学报, 2019, 24(2): 59-72.
ZHANG Z C, QIAO W Y, BAI T.Effects of Surface Roughness on the Flow of High-Lift Low-Pressure Turbine[J]. Journal of Harbin University of Science and Technology, 2019, 24(2): 59-72.
[13] TAYLOR R P.Surface Roughness Measurements on Gas Turbine Blades[J]. Journal of Turbomachinery, 1990, 112(2): 175-180.
[14] GOSTELOW J P.The Effect of Surface Roughness on Turbine Blade Performance[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(4): 655-662.
[15] KURZ R, DOHMEN M, SCHULZ A.Impact of Blade Surface Roughness on High-Pressure Turbine Performance[J]. Journal of Propulsion and Power, 2018, 34(2): 432-444.
[16] SIGAL A, DANBERG J E.New Correlation of Roughness Density Effect on the Turbulent Boundary Layer[J]. AIAA Journal, 1990, 28(3): 554-556.
[17] SIMON H, BU¨LSKA¨MPER A. On the Evaluation of Reynolds Number and Relative Surface Roughness Effects on Centrifugal Compressor Performance Based on Systematic Experimental Investigations[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2): 489-498.
[18] BOYLE R J, GIEL P W.Three-Dimensional Navier- Stokes Heat Transfer Predictions for Turbine Blade Rows[J]. Journal of Propulsion and Power, 1995, 11(6): 1179-1186.
[19] ABUAF N, BUNKER R S, LEE C P.Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils[J]. Journal of Turbomachinery, 1998, 120(3): 522-529.
[20] BOYLE R J, SENYITKO R G.Measurements and Predictions of Surface Roughness Effects on the Turbine Vane Aerodynamics[C]//Turbo Expo 2003, Parts A and B. Atlanta: ASMEDC, 2003.
[21] BUNKER R S.The Effect of Thermal Barrier Coating Roughness Magnitude on Heat Transfer with and without Flowpath Surface Steps[C]//Heat Transfer, Volume 2. Washington: ASMEDC, 2003.
[22] STRIPF M, SCHULZ A, WITTIG S.Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane[J]. Journal of Turbomachinery, 2005, 127(1): 200-208.
[23] HUMMEL F, LÖTZERICH M, CARDAMONE P, et al. Surface Roughness Effects on Turbine Blade Aerodynamics[J]. Journal of Turbomachinery, 2005, 127(3): 453.
[24] ADAMS T, GRANT C, WATSON H.A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-Grain Roughness[J]. International Journal of Mechanical Engineering and Mechatronics, 2012, 1(1): 66-71.
[25] SHABBIR A, TURNER M G.A Wall Function for Calculating the Skin Friction with Surface Roughness[C]//Turbo Expo 2004, Parts A and B. Vienna: ASMEDC, 2004.
[26] TARADA F, SUZUKI M.External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness[C]//ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. [s. l.]: ASME, 1993.
[27] BOGARD D G, SCHMIDT D L, TABBITA M.Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer[J]. Journal of Turbomachinery, 1998, 120(2): 337-342.
[28] 陈泽, 张志强, 韦文涛, 等. 涡轮叶片热障涂层在CMAS环境下的失效分析[J]. 航空发动机, 2022, 48(2): 121-126.
CHEN Z, ZHANG Z Q, WEI W T, et al.Failure Analysis of Thermal Barrier Coatings on Turbine Blade in CMAS Environment[J]. Aeroengine, 2022, 48(2): 121-126.
[29] CUMPSTY N A.Jet Propulsion: A Simple Guide to the Aerodynamics and Thermodynamics of Propulsion[M]. Cambridge: Cambridge University Press, 2016: 80-100.
[30] LEYLEK J H, LAKSHMINARAYANA B.Effect of Surface Roughness on Turbine Blade Performance[C]//ASME 1987 International Gas Turbine and Aeroengine Congress and Exposition. [s. l.]: ASME, 1987.
[31] SMITH D E, SEUME J R.Separation and Reattachment of Supersonic Flows at Turbine Blade Leading Edges[C]//23rd AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference. [s. l.]: AIAA, 1987.